SDDP for multistage stochastic programs: preprocessing via scenario reduction

نویسندگان

  • Jitka Dupacová
  • Václav Kozmík
چکیده

Even with recent enhancements, computation times for large-scale multistage problems with risk-averse objective functions can be very long. Therefore, preprocessing via scenario reduction could be considered as a way to significantly improve the overall performance. Stage-wise backward reduction of single scenarios applied to a fixed branching structure of the tree is a promising tool for efficient algorithms like SDDP. We provide computational results which show an acceptable precision of the results for the reduced problem and a substantial decrease of the total computation time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs

We prove the almost-sure convergence of a class of samplingbased nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions, and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to problems with general convex cost...

متن کامل

SDDP for multistage stochastic linear programs based on spectral risk measures

We consider risk-averse formulations of multistage stochastic linear programs. For these formulations, based on convex combinations of spectral risk measures, risk-averse dynamic programming equations can be written. As a result, the Stochastic Dual Dynamic Programming (SDDP) algorithm can be used to obtain approximations of the corresponding risk-averse recourse functions. This allows us to de...

متن کامل

Scenario tree reduction for multistage stochastic programs

A framework for the reduction of scenario trees as inputs of (linear) multistage stochastic programs is provided such that optimal values and approximate solution sets remain close to each other. The argument is based on upper bounds of the Lr -distance and the filtration distance, and on quantitative stability results for multistage stochastic programs. The important difference from scenario r...

متن کامل

Scenario tree modelling for multistage stochastic programs

An important issue for solving multistage stochastic programs consists in the approximate representation of the (multivariate) stochastic input process in the form of a scenario tree. In this paper, forward and backward approaches are developed for generating scenario trees out of an initial fan of individual scenarios. Both approaches are motivated by the recent stability result in [15] for op...

متن کامل

Scenario tree modeling for multistage stochastic programs

An important issue for solving multistage stochastic programs consists in the approximate representation of the (multivariate) stochastic input process in the form of a scenario tree. In this paper, we develop (stability) theory-based heuristics for generating scenario trees out of an initial set of scenarios. They are based on forward or backward algorithms for tree generation consisting of re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Manag. Science

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017